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@ How to find the goodness of a function f7?
@ Throughalossl: Fx L —TR

@ Such that value of I(f, z) increases with the wrongness of f on z:
(measure of discripency between the expected and predicted)
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Loss/Risk

@ Learning: finding a good function f* from a set of functions F
@ How to find the goodness of a function f7?
@ Throughalossl: Fx L —TR

@ Such that value of I(f, z) increases with the wrongness of f on z:
(measure of discripency between the expected and predicted)

® o Regression: I(f,(x,y)) = (f(z) —y)?
o Classification: I(f, (z,y)) = 1(f(z) #y)
o Density estimation: (g, 2) = —log(q(2))

® Loss may have additional terms (from prior knowledge)
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Expected Risk

@ We want f with small expected (average) risk R(f) =E.(I(f, z))
@ f* = argmin R(f)
fer

@ This is unknown. However, if the training data D = {z;,...,2n} is
i.i.d. we can estimate the risk empirically (known as empirical risk),

R(f;D) =Bp(I(f,2) = % S, U(f, 2a)
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Optimization

o How to find the model parameters that minimize the loss function?

w* = argmin L(w)
w
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Optimization I.l
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o How to find the model parameters that minimize the loss function?
w* = argmin L(w)

w

o General and vast, but we will discuss within our context
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o Finding the parameters that minimize the training loss

W*,b* = argmin £(f(; W, b); D)
W.,b
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Optimization

o Finding the parameters that minimize the training loss

W*,b* = argmin £(f(; W, b); D)
Wb
o How do we find these optimal parameters?

o Closed form solution (e.g. linear regression)
o Ad-hoc recipes (e.g. Perceptron, K-NN classifier)
o What if the loss function can't be minimized analytically?
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o Probe random directions
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o Probe random directions
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Not-so-intelligent idea!

o Probe random directions
o Progress if you find a useful direction
o Repeat

o Very ineffective!
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A better looking one: Follow the slope!

o Sense the slope around the feet
0 Identify the steepest direction, make a brief progress

o Repeat until convergence!
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Derivative and Gradient

o In 1D, derivative of a function gives the slope

of .. flx+6)— f(x)
or —am h

Dr. Konda Reddy Mopuri dl -2/MLP 11



Derivative and Gradient

o In 1D, derivative of a function gives the slope

of .. flx+6)— f(x)
or —am h

o In higher dimensions, given a function

fRP SR
gradient is the mapping
Vi RP 5 RP
af af
x % <al’1’ ceey 8xD)

Dr. Konda Reddy Mopuri dl -2/MLP 11



Derivative and Gradient

o In 1D, derivative of a function gives the slope

of .. flx+6)— f(x)
or —am h

o In higher dimensions, given a function

fRP SR
gradient is the mapping
Vi RP 5 RP
af af
x % <al’1’ ceey 8xD>

o Vf vector gives the direction and rate of fastest increase for f.
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Gradient Descent

o Goal is to minimize the error (or loss): determine the parameters w
that minimize the loss £(w)
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Gradient Descent

o Goal is to minimize the error (or loss): determine the parameters w
that minimize the loss £(w)

o Gradient points uphill = negative of gradient points downhill
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Gradient Descent
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Figure credits:Ahmed Fawzy Gad
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Gradient Descent

@ Start with an arbitrary initial parameter vector wy
@ Repeatedly modify it via updating in small steps

@ At each step, modify in the direction that produces
steepest descent along the error surface
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How to compute the gradient?

o Numerically, for each component of w using the derivative formula

of .. flx+6)— f(x)
or —am 5
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How to compute the gradient?

o Numerically, for each component of w using the derivative formula

of .. flx+6)— f(x)
or —am 5

o Slow and approximate!
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How to compute the gradient?

o Analytically, using calculus for computing the derivatives

L; = Z max{0,s; — sy, + 1}

J#Yi

1 2
L= N;Li—i—%jwk
S:f(l‘,W)

VL;,?
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How to compute the gradient?

o Analytically, using calculus for computing the derivatives

L; = Z max{0,s; — sy, + 1}

J#Yi

1 2
L= N;Li—i—%jwk
S:f(l‘,W)

VL;,?

o Analytic way is fast, exact, but error-prone!
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Batch Gradient Descent

for i in range(nb_epochs):
VL, = evaluate_gradient(L, D, w)
w=w-n% Vi,
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Batch Gradient Descent

for i in range(nb_epochs):
VL, = evaluate_gradient(L, D, w)
w=w-n% Vi,
@ Guaranteed to converge to global minima in case of convex functions,
and to a local minima in case of non-convex functions
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@ Performs updates parameters for each training example
w=w—nVyuL(w,z" y")
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@
Stochastic Gradient Descent (SGD) Il

@ Performs updates parameters for each training example
w=w —NVuL(w,z*,y)

@ In case of large datasets, Batch GD computes redundant gradients for
similar examples for each parameter update

® SGD does away with redundancy and generally faster and can be used
to learn online
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Stochastic Gradient Descent (SGD)

@ However, frequent updates with a high variance cause the objective
function to fluctuate heavily
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Figure credits: Wikipedia
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@ SGD'’s fluctuations enable it to jump to new and potentially better
local minima
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local minima
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@
Stochastic Gradient Descent (SGD) Il

@ SGD'’s fluctuations enable it to jump to new and potentially better
local minima

@ This complicates the convergence, as it overshoots

@ However, if the learning rate is slowly decreased, we can show similar
convergence to Batch GD
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Stochastic Gradient Descent (SGD)

for i in range (nb_epochs) :
np.random.shuffle (D)
for z; € D:
VL, = evaluate_gradient (L, x;, W)
wW=w—n%VLy
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Mini-batch Gradient Descent

@ Takes the best of both worlds, updates the parameters for every
mini-batch of n samples
w=w — nvwﬁ(w; .,L.i:iJrn’ yi:iJrn)
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Mini-batch Gradient Descent

@ Takes the best of both worlds, updates the parameters for every
mini-batch of n samples
w=w — nvwﬁ(w; .,L.i:iJrn’ yi:iJrn)

@ o Reduces the variance of the parameter updates, which can lead to more

stable convergence
o Can make use of highly optimized matrix optimizations
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Mini-batch Gradient Descent

@ Takes the best of both worlds, updates the parameters for every
mini-batch of n samples
W= 1w — nvwﬁ(w; .,L.ern’ yz:ern)

@ o Reduces the variance of the parameter updates, which can lead to more

stable convergence
o Can make use of highly optimized matrix optimizations

@ Common mini-batch sizes vary from 32 to 1024, depending on the

application

@ This is the algorithm of choice while training DNNs (also, incorrectly
referred to as SGD in general)
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Mini-batch Gradient Descent \I.l\

for i in range (nb_epochs):
np.random.shuffle (D)
for batch in get_batches (D, batch_size = 128):
VL, = evaluate_gradient (L, batch, w)
w=w—"n% VL
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@ Choosing a proper learning rate
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Some challenges

@ Choosing a proper learning rate

o Learning rate schedules try to adjust it during the training
o However, these schedules are defined in advance and hence unable to
adapt to the task at hand

@ Same learning rate applies to all the parameters

@ Avoiding numerous sub-optimal local minima
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