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Loss/Risk

1 Learning: finding a good function f∗ from a set of functions F

2 How to find the goodness of a function f?
3 Through a loss l : F × L → R
4 Such that value of l(f, z) increases with the wrongness of f on z:

(measure of discripency between the expected and predicted)
5 Regression: l(f, (x, y)) = (f(x)− y)2

Classification: l(f, (x, y)) = 1(f(x) , y)
Density estimation: l(q, z) = −log(q(z))

6 Loss may have additional terms (from prior knowledge)
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Expected Risk

1 We want f with small expected (average) risk R(f) = Ez(l(f, z))

2 f∗ = argmin
f∈F

R(f)

3 This is unknown. However, if the training data D = {z1, . . . , zN} is
i.i.d. we can estimate the risk empirically (known as empirical risk),

R̂(f ;D) = ÊD(l(f, z)) = 1
N

∑N
i=1 l(f, zn)
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R̂(f ;D) = ÊD(l(f, z)) = 1
N

∑N
i=1 l(f, zn)

Dr. Konda Reddy Mopuri dl -2/MLP 3



Optimization

How to find the model parameters that minimize the loss function?

w∗ = argmin
w

L(w)

General and vast, but we will discuss within our context
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Optimization

Finding the parameters that minimize the training loss

W ∗,b∗ = argmin
W,b

L(f(·;W,b);D)

How do we find these optimal parameters?

Closed form solution (e.g. linear regression)
Ad-hoc recipes (e.g. Perceptron, K-NN classifier)
What if the loss function can’t be minimized analytically?
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Optimization

Source: travelholicq.com
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Not-so-intelligent idea!

Probe random directions

Progress if you find a useful direction

Repeat

Very ineffective!
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A better looking one: Follow the slope!

Sense the slope around the feet

Identify the steepest direction, make a brief progress

Repeat until convergence!
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Derivative and Gradient

In 1D, derivative of a function gives the slope

∂f

∂x
= lim

δ→0

f(x+ δ)− f(x)
h

In higher dimensions, given a function

f :RD → R

gradient is the mapping

∇f :RD → RD

x→
(
∂f

∂x1
, . . . ,

∂f

∂xD

)
∇f vector gives the direction and rate of fastest increase for f .
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Gradient Descent

Goal is to minimize the error (or loss): determine the parameters w
that minimize the loss L(w)

Gradient points uphill → negative of gradient points downhill
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Gradient Descent

Figure credits:Ahmed Fawzy Gad
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Gradient Descent

1 Start with an arbitrary initial parameter vector w0

2 Repeatedly modify it via updating in small steps
3 At each step, modify in the direction that produces

steepest descent along the error surface
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How to compute the gradient?

Numerically, for each component of w using the derivative formula

∂f

∂x
= lim

δ→0

f(x+ δ)− f(x)
δ

Slow and approximate!
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How to compute the gradient?

Analytically, using calculus for computing the derivatives

Li =
∑
j,yi

max{0, sj − syi + 1}

L = 1
N

∑
i

Li +
∑
k

w2
k

s = f(x,W )
∇Liw?

Analytic way is fast, exact, but error-prone!
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Batch Gradient Descent

for i in range(nb_epochs):
∇Lw = evaluate_gradient(L, D, w)
w = w - η * ∇Lw

1 Guaranteed to converge to global minima in case of convex functions,
and to a local minima in case of non-convex functions
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Stochastic Gradient Descent (SGD)

1 Performs updates parameters for each training example
w = w − η∇wL(w, xi, yi)

2 In case of large datasets, Batch GD computes redundant gradients for
similar examples for each parameter update

3 SGD does away with redundancy and generally faster and can be used
to learn online
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Stochastic Gradient Descent (SGD)

1 However, frequent updates with a high variance cause the objective
function to fluctuate heavily

Figure credits: Wikipedia
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Stochastic Gradient Descent (SGD)

1 SGD’s fluctuations enable it to jump to new and potentially better
local minima

2 This complicates the convergence, as it overshoots
3 However, if the learning rate is slowly decreased, we can show similar

convergence to Batch GD
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Stochastic Gradient Descent (SGD)

for i in range(nb_epochs):
np.random.shuffle(D)
for xi ∈ D:
∇Lw = evaluate_gradient(L, xi, w)
w = w − η ∗ ∇Lw

Dr. Konda Reddy Mopuri dl -2/MLP 21



Mini-batch Gradient Descent

1 Takes the best of both worlds, updates the parameters for every
mini-batch of n samples
w = w − η∇wL(w, xi:i+n, yi:i+n)

2 Reduces the variance of the parameter updates, which can lead to more
stable convergence
Can make use of highly optimized matrix optimizations

3 Common mini-batch sizes vary from 32 to 1024, depending on the
application

4 This is the algorithm of choice while training DNNs (also, incorrectly
referred to as SGD in general)
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Mini-batch Gradient Descent
for i in range(nb_epochs):

np.random.shuffle(D)
for batch in get_batches(D, batch_size = 128):
∇Lw = evaluate_gradient(L, batch, w)
w = w − η ∗ ∇Lw
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Some challenges

1 Choosing a proper learning rate

Learning rate schedules try to adjust it during the training
However, these schedules are defined in advance and hence unable to
adapt to the task at hand

2 Same learning rate applies to all the parameters
3 Avoiding numerous sub-optimal local minima

Dr. Konda Reddy Mopuri dl -2/MLP 24



Some challenges

1 Choosing a proper learning rate
Learning rate schedules try to adjust it during the training

However, these schedules are defined in advance and hence unable to
adapt to the task at hand

2 Same learning rate applies to all the parameters
3 Avoiding numerous sub-optimal local minima

Dr. Konda Reddy Mopuri dl -2/MLP 24



Some challenges

1 Choosing a proper learning rate
Learning rate schedules try to adjust it during the training
However, these schedules are defined in advance and hence unable to
adapt to the task at hand

2 Same learning rate applies to all the parameters
3 Avoiding numerous sub-optimal local minima

Dr. Konda Reddy Mopuri dl -2/MLP 24



Some challenges

1 Choosing a proper learning rate
Learning rate schedules try to adjust it during the training
However, these schedules are defined in advance and hence unable to
adapt to the task at hand

2 Same learning rate applies to all the parameters

3 Avoiding numerous sub-optimal local minima

Dr. Konda Reddy Mopuri dl -2/MLP 24



Some challenges

1 Choosing a proper learning rate
Learning rate schedules try to adjust it during the training
However, these schedules are defined in advance and hence unable to
adapt to the task at hand

2 Same learning rate applies to all the parameters
3 Avoiding numerous sub-optimal local minima

Dr. Konda Reddy Mopuri dl -2/MLP 24


